An Extensive Replication Study of the ABLoTS
Approach for Bug Localization

Feifei Niu'", Enshuo Zhang', Christoph Mayr-Dorn?,
Wesley K. G. Assuncao®, Liguo Huang?, Jidong Ge!, Bin Luo!,
Alexander Egyed?

"State Key Laboratory for Novel Software Technology, Nanjing
University, Nanjing, China.
’Institute for Software Systems Engineering, Johannes Kepler
University, Linz, Austria.

3Department of Computer Science, North Carolina State University,
North Carolina, USA.

4Department of Computer Science, Southern Methodist University,
Dallas, Texas, USA.

*Corresponding author(s). E-mail(s): niufeifei@smail.nju.edu.cn;
Contributing authors: 2575357413@Qqq.com;
christoph.mayr-dorn@jku.at; wguezas@ncsu.edu; lghuang@smu.edu;
gjd@nju.edu.cn; luobin@nju.edu.cn; alexander.egyed@jku.at;

Abstract

Bug localization is the task of recommending source code locations (typically
files) that contain the cause of a bug and hence need to be changed to fix the bug.
Along these lines, information retrieval-based bug localization (IRBL) approaches
have been adopted, which identify the most bug-prone files from the source code
space. In current practice, a series of state-of-the-art IRBL techniques leverage
the combination of different components (e.g., similar reports, version history, and
code structure) to achieve better performance. ABLoTS is a recently proposed
approach with the core component, TraceScore, that utilizes requirements and
traceability information between different issue reports (i.e., feature requests and
bug reports) to identify buggy source code snippets with promising results. To
evaluate the accuracy of these results and obtain additional insights into the prac-
tical applicability of ABLoTS, we conducted a replication study of this approach
with the original dataset and also on two extended datasets (i.e., additional Java
dataset and Python dataset). The original dataset consists of 11 open source Java



projects with 8,494 bug reports. The extended Java dataset includes 16 more
projects comprising 25,893 bug reports and corresponding source code commits.
The extended Python dataset consists of 12 projects with 1,289 bug reports.
While we find that the TraceScore component, which is the core of ABLoTS, pro-
duces comparable or even better results with the extended datasets, we also find
that we cannot reproduce the ABLoTS results, as reported in its original paper,
due to an overlooked side effect of incorrectly choosing a cut-off date that led to
test data leaking into training data with significant effects on performance. Addi-
tionally, we conduct experiments to assess the performance of various composers
that aggregate scores from different components, revealing that Logistic Regres-
sion, fixed weight, and CombSUM outperform the other composers across all three
datasets, while decision tree and random forest exhibited subpar performance.

Keywords: bug localization, information retrieval, replication study, composer

1 Introduction

A software bug refers to an error, fault, or flaw that produces unexpected results or
causes a system to behave unexpectedly [1]. A bug may cause the system to crash or
become vulnerable to security attacks [2, 3]. Bugs are a common phenomenon. For
example, a Mozilla triager complained that “every day, almost 300 bugs appear that
need triage” [4]. Considering the severe consequences and frequent occurrences, bugs
need to be responded to promptly and coped seriously. To this end, various techniques
to assist this process have been suggested, for example, defect prediction [5, 6], bug
triaging [7, 8], bug localization [9, 10], and bug fixing [11, 12].

Bug localization, which refers to identifying the parts of source code that cause
the bug and need to be changed in order to fix it, is one of the main challenges when
solving bugs in practice [13]. However, finding the buggy files from the source code
can become a daunting task [14], especially in large projects consisting of thousands of
source code files. To help to deal with this issue, researchers proposed several automatic
approaches for bug localization [14-17].

Among existing approaches for bug localization, there is a series of them that
leverage bug reports for better localization [14, 16, 17], since bug reports often contain
rich information that allows us to infer the bug’s location. Approaches that utilize the
textual content of bug reports are generally described as information retrieval-based
bug localization (IRBL). For a given bug report, IRBL finds and ranks code snippets
that may be relevant to the bug report [18], which is usually done by calculating the
similarity between the bug report and source code [18]. For example, Saha et al. [19]
propose the BLUIR approach that extracts structured information (e.g., class names,
method names, variable names, and comments) from source code and calculates the
textual similarity between the source code and bug reports to retrieve buggy files.
However, there exists a lexical gap between bug reports and source code files [20]. The
terms used to describe the bug in the bug report may not match the terms used in
class names, methods names, variable names, or comments. Not surprisingly, textual
similarity by itself will not necessarily yield good results [14].



To improve the performance of bug localization, state-of-the-art approaches lever-
age multiple sources of information. Wang et al. propose the AmalLgam approach,
which combines code structure, similar bug reports, and version history [14]. Another
approach, namely BRTracer+, leverages bug reports similarity and stack trace from
bug reports for bug localization [21]. Youm et al. integrate stack trace information
with all those pieces of information used by AmaLgam [22]. Additionally, AmalLgam+
leverages five sources of information, namely version history, similar bug reports, code
structure, stack trace, and reporter information [17].

Rath et al. presented a new approach, named ABLoTS, that leverages not only sim-
ilar bug reports, version history, code structure, but also similar non-bug reports, like
feature requests, enhancements, and tasks, as well as traceability information between
bug reports and other types of issues [23]. Rath et al. reused the structure of Amal-
gam, but proposed TraceScore to replace the similar bug reports component, and
additionally decided to use a decision tree (DT) for dynamically combining the rec-
ommendations from the individual components. The experimental evaluation showed
that ABLoTS greatly outperforms Amalgam.

Although the original study by Rath et al. [23] showed encouraging results (with
no other state-of-the-art approaches exhibiting better performance [24, 25]), there are
no replications in the literature that confirm its outstanding performance. Addition-
ally, there are no studies that investigate whether the performance also holds for other
datasets, i.e., that evaluate the generalization of ABLoTS. A replication study is help-
ful and necessary to verify experimental results from previous studies [26]. They are
a key aspect of empirical software engineering, as they bring evidence that observa-
tions made can hold (or not) under other conditions [27]. Extensive and independent
evaluations are also necessary to reach industrial adoption and practice [28, 29].

In a previous work [30], we present a literal and conceptual replication [31] of
the ABLoTS approach. We replicated the experiments as closely as possible to the
initial procedures. We also run the experiment on a new Java dataset without chang-
ing anything else, to see how well the results hold up. Thus, we first re-implemented
TraceScore, the core component of ABLoT'S, and checked the replicability of the results
on the original dataset. Then, we replicated the overall ABLoTS framework on the
original dataset. Additionally, we investigated the TraceScore’s and ABLoTS’ gener-
alizability on the new Java dataset including 16 more projects comprising 25,893 bug
reports and corresponding source code commits. In general, our replication results
show that TraceScore is replicable and generalizable under specific settings under a
relaxed cut-off date (i.c., use fixed date as cut-off date). However, ABLoTS is neither
replicable on the original dataset nor on a larger dataset [32]. Specifically, we observed
that the implementation of ABLoTS reused a subcomponent from prior work (Amal-
gam [14]) that incorrectly sets a cut-off date, which leads to test data leaking into
training data.

In this paper, we report an extension of our previous work [30]. While our initial
replication focused only on Java projects, in this extension, we introduce a Python
dataset, and also other factors constant, to see how well the results hold up on new
projects and new programming language. The new dataset and new programming
language are based on two extended datasets from SEOSS 33 [32] and BuGL [33].



Additionally to the new dataset, in this work, we also investigate the performance of
various fusion methods for combining ABLoTS’ three main scoring components.
The contributions of this paper are:

1. An empirical investigation showing that the TraceScore component is replicable
and generalizable, thus strengthening confidence that relations between bug reports
and feature requests yield useful information for bug localization.

2. A failed attempt to replicate the promising results of the ABLoTS approach,
thereby showing that bug localization still needs significant research efforts and is
not ready for practical application. Additionally, we present the major reason why
replication failed, thereby highlighting the challenge of reusing research results.

3. Valuable findings for further studies on IRBL: 1) Combining different components
can yield better results, however, researchers should always be careful about choos-
ing the proper cut-off date. 2) Amalgam’s implementation of BugCache may not
be as useful as expected, since they adopted a wrong cut-off date. 3) Preliminary
exploration of the effectiveness of different composers reveals that Logistic Regres-
sion (LR), fixed weight and CombSUM perform well across the three datasets. In
contrast, DT and Random Forest (RF) exhibit poorer performance.

4. Replication package and experimental results’ to replicate our experiment and
evaluate the ABLoTS approach.

Our work is organized according to standard replication report guidelines for soft-
ware engineering studies [27]. This is an external and independent replication study
without any of the authors of the original paper taking part in the replication process.

The rest of this paper is organized as follows. Section 2 summarizes the original
study, approach, evaluation, and achieved results. Section 3 elaborates our replication
study design, research questions, and dataset. The experimental results are presented
and discussed in Section 4. Section 5 discusses threats to validity. Related work is
presented in Section 6, followed by the conclusion of this work in Section 7.

2 Replicated Study

This work is a replication of the ABLoTS approach proposed by Rath et al. [23], which
consists of four components shown in Fig. 1, namely Version History Component,
Similar Reports Component, Code Structure Component and Composer
Component. In this section, we provide an overview of the ABLoTS approach. We
firstly present the whole framework of the ABLoTS approach (Section 2.1), followed
by the TraceScore component that is at the center of ABLoTS approach, encapsulated
in the Similar Reports Component (described in Section 2.2). Then, we present
the utilized evaluation metrics (Section 2.3) as well as the dataset as used in the
original study (Section 2.4). Finally, we summarize the reported experimental results
(Section 2.5).

Lhttps://github.com /feifeiniu-se/Replication2



SuspH
> Version History Component |—>

| New Bug Report :E Ranked
§_ Files:
Similar Reports Component o File 1
= .
Resolved Issues % File 2
a
SuspS g
| Source Code b Code Structure Component I———V O

Fig. 1 Components of ABLoTS.

Resolved %»
Artifacts u fac
\_/\

Selection

Relevant |
Artifacts

New Bug Report | | @ Text _>© Textual
_— Preprocessing Similarity
I
A J

@Trace Graph Ranking
® ® , | 1.FilcA
-
TraceScore| Rank™ |2 Fjle B
3. File C

Fig. 2 TraceScore Component.

2.1 ABLOTS Approach

As shown in Fig. 1, the overall ABLoTS approach consists of four components: 1) sim-
ilar reports component, 2) version history component, 3) code structure component,
and 4) composer component. Rath et al. [23] implemented TraceScore as a similar
reports component, and they reused the version history component, code structure
component, and composer component without changes. They are briefly described
below.

Version History Component uses BugCache [5, 34], to predict which files are
likely to be buggy in the future. BugCache takes commit history as input and outputs
a list of files with a high “suspiciousness” score. To this end, it firstly identifies bug-
fixing commits (commits whose commit messages contain the word “fix” or “bug”)
that were committed within k days prior to the submission of the new bug report b*.
Then the suspiciousness score of each file f is calculated by Eq. 1, where f is one of the
buggy files in commit ¢ € C, t. is the elapsed time in days between the commit ¢ and
when the bug report was filed. k was set to 15 (days) according to Wang et al. [14].

1
o _
Susp™ (f,bx) = Z 1+ el2(—((k—t)/R)) (1)
ceCNfec

Similar Reports Component is based on the assumption that similar bugs will
be caused by similar source code snippets. Hence, by identifying similar bugs reports
and inspecting which files were changed in their bug-fixing commits, one can obtain
a list of files indicating the bug location. ABLoTS approach implemented TraceScore



as the similar reports component. Specifically, it introduces a calculation scheme for
the similar reports component compared with SimiScore [16].

Code Structure Component leverages BLUIR [19] to identify files from source
code space according to the similarity between source code files and bug report b*. It
outputs a ranked list of files with a suspiciousness score Susp®(f, b*).

Composer Component aggregates the three suspiciousness scores obtained by
the first three components, i.e., Susp®™, Susp™, Susp®, and outputs the final results.
Instead of adopting a fixed weight scheme for the three scores as done by Wang et
al. [14, 17], ABLoTS applied Weka’s [35] J48 DT to learn the best combination. For
training, the classification algorithm takes Susp™(f,b*), Susp™ (f,bx), Susp®(f, b*)
as the features, and whether that file f was changed as part of the bug fix or not as
the classification result. For each project separately, they trained the classifier on 80%
of the bug reports that were resolved and evaluated ABLoTS on the remaining 20%
that were resolved after the 80% cut-off deadline.

2.2 TraceScore Component

TraceScore is one of the main components of the ABLoTS approach. It mainly consists
of six steps, as shown in Fig. 2. Given a new bug report b* TraceScore takes previously
resolved issue reports (including bug reports B and feature requests R) as input.
Step 1 is artifact selection, based on two criteria, namely time domain and number
of modified files. For the time domain, bug reports b € B and feature requests r € R
that are fixed within “one year before b* was filed” to “the date when b* was filed”,
would be retained. As for number of modified files, only bug reports b € B that modify
no more than 10 Java files and feature requests r € R that modify no more than 20
Java files will be retained. The reasons for adoption of these two criteria and their
validity are explained in Section 6 of the original study. Step 2 utilizes commonly used
preprocessing techniques to build a document-term-matrix [36] of the filtered artifacts
from Step 1. Then, in Step 3, TraceScore calculates the cosine similarity between b*
and each artifact. In Step 4, a trace graph is created, with b* as the root node, linked
to sub-graphs of different artifacts, by the edges indicating textual similarity between
b* and each artifact (if there is a trace link between b* and artifact, the edge is set
to 1). Each artifact traces further to the files that are part of a corresponding commit
in the version control system. In this way, b* is indirectly linked to a potentially large
set of source code files, that need subsequent ranking, where the ranking happens on
the basis of a TraceScore between each file and b* which is calculated by Eq. 2
in Step 5. Finally, Step 6 sorts all the source code files linked to b* according to
TraceScore and outputs the ranked list. A higher score indicates a higher likelihood
of that file being relevant.

sim(a;, bx)?

Susp®(s,bx) = | fix(as)]

a;€{a|s€fiz(a)}

(2)

2.3 Evaluation Metrics

To evaluate the effectiveness of ABLoTS, Rath et al. adopted three metrics:



Top k [37] measures the percentage of bug reports in which at least one of the
buggy files is in top k ranked files, where k=1, 5, 10.

Mean Average Precision (MAP) [36] is calculated as the mean of the Average
Precision over all queries. Average Precision of a given bug report aggregates precision
of positively recommended files as:

N . )

P(i) * pos(i)

AP = 3

;::1 # of positive instances 3)

where 7 is a rank of the ranked files, N is the number of ranked files and pos(i) €

{0,1} indicates whether the ith file is a buggy file or not. P(i) is the precision at a
given top 1 files:

. #of buggy filesintopi
P(i) = ; ()
Mean Reciprocal Rank (MRR) [38] computes the average of the reciprocal of
the positions of the first correctly located buggy file in the ranked files, following this
equation:

1501
MRR=—
RE Q \%I: rank; (5)

2.4 Original Dataset

In the original study, Rath et al. contributed a dataset [39] consisting of 15 open source
Java projects with 13,581 bug reports and 9,219 feature requests. Firstly, they collected
issues reports (i.e., bug reports and feature requests), as well as the dependency trace
links from Jira [40], and downloaded source code of these projects from GitHub [41].
Then the heuristic proposed in [42] was applied to create links between issues and
commits. The ABLoTS approach was evaluated based on this dataset.

2.5 Achieved Performance Originally Reported

The reported performance by ABLoTS is shown in Table 1, which is the average
on 15 projects. The average MAP and MRR of TraceScore is 20.2% and 26%, while
that of ABLOTS is 48.8% and 54.5%, respectively. Specifically, ABLoTS exhibits the
ability to accurately identify at least one buggy file for 48.7% of the bug reports when
considering only the top-ranked files. Moreover, in the top 5 ranked files, ABLoTS
successfully identifies at least one buggy file for 64.9% of the bug reports. Rath et al.
revealed that TraceScore benefits from leveraging non-bug issues as well as traceability
information. It can outperform two state-of-the-art similar reports based approaches:
SimiScore [16] and CollabScore [43]. The overall ABLoTS framework leverages DT as
composer and outperforms the Amalgam framework [14] which leverages fixed weight
composer.



Table 1 Original, reported results [23]

Algorithm MAP MRR Topl Topb5 Top 10
TraceScore  0.202  0.260 0.174 0.350 0.436
ABLOTS 0.488  0.545 0.487 0.610 0.649

3 Replication Methodology

The goal of this replication study is to investigate whether the results based on the
TraceScore component and ABLoTS approach are replicable and generalizable to dif-
ferent projects and languages. Furthermore, we explore the performance of different
composers on aggregating the three suspiciousness scores. To this end, we 1) replicate
the component and the approach on a subset of the original dataset; 2) apply the com-
ponent and the approach on 16 more Java projects and 12 more Python projects; and
3) evaluate the performance of different composers by fusing the three components
in diverse ways. We provide a description of the extended datasets in Section 3.1.
Subsequently, we outline our research questions in Section 3.2, followed by detailed
explanations of the replication methodology (Section 3.3 through Section 3.5). We
reuse the same evaluation metrics as Rath et al., including MAP, MRR, and Top 1,
3, and 5 (Section 2.3).

This study is considered to be an external [27] replication study of the original
study, since none of the authors took part in the replication process. However, we
reused 11 projects of the original dataset to verify the results.?

3.1 Dataset

For the replicability validation, we reuse the dataset provided for replication by Rath et
al. [39], which we refer to as “Original-Java”. However, by the time we carried out the
replication study, many commits from four projects (i.e., Axis2, Hadoop, Infinispan,
and Pig) were no longer available on GitHub, and neither were part of the original
replication package. Hence, as we could not obtain the complete commit history for
BugCache, we excluded these four projects from the analysis in this paper.

As stated in Section 3.2, the generalizability evaluation comes from two aspects:
1) additional dataset of the same language and 2) additional dataset of different pro-
gramming language. To this end, we picked two additional datasets: 1) SEOSS 33
dataset [32] and 2) BuGL dataset [33]. The SEOSS 33 dataset includes 18 additional
projects and 36,482 bug reports out of which we could not use 2 projects due to the
same issue of non-accessible commits. We refer to this dataset as “Extended-Java”.
This extended dataset also includes the 15 original projects from the replication pack-
age [39]. We choose this dataset because it not only links bug reports to commit code
change, but also includes traceability information between bug reports and non-bug
issues, which caters to our needs perfectly. The BuGL dataset is a large-scale cross-
language dataset for bug localization. BuGL consists of more than 10,000 bug reports
drawn from open source projects written in four programming languages, namely C,
C++, Java, and Python. In this research, we only select Python projects in BuGL

2The other four projects from the original dataset were excluded due to some missing commits on GitHub.



dataset, which includes 12 open source projects with 1,289 bug reports. We refer to
this dataset as “Extended-Python”.

The reason for choosing Python for our study is that it is one of the most popular
programming languages [44, 45], even outperformed Java according to the 2023 Stack
Overflow Developer Survey. However, there is no feature requests or traceability infor-
mation between issues contained in the Python dataset. Thus, we can only leverage
the similar bug reports for TraceScore, which may bring bias to our results. Details
about the extended dataset are shown in Table 2, which shows that the Java projects
tend to be larger compared to Python projects when considering the number of bug
reports and source code files.

Apart from the information in the dataset, we additionally collected version infor-
mation for each project. In each commit, developers may modify a file, add a new file,
or remove an old file. Removed files are obsolete and should not appear in the rec-
ommendation of a new bug report. However, the similar reports component leverages
historical issues, which may be pointing to no longer existing files. In this way, they
may bias the prediction results. To address this issue, we determine for each commit
which files exist just prior to this commit. Files in this set can only be used as the
candidates to recommend the bug’s location.

Table 2 Characteristics of the Extended-Java and Extended-Python Dataset.

Java # Bug # Non-bug Python # Bug

Projects Reports Reports # Files Projects Reports # Files
ARCHIVA 371 411 1024 ERTBOT 170 345
CASSANDRA 3571 2813 3595 COMPOSE 155 82
ERRAI 267 194 3703 DJANGO_R._F. 153 155
FLINK 1350 2351 13192 FLASK 53 73
GROOVY 1933 1017 1375 KERAS 51 198
HBASE 4581 5171 4657 MITMPROXY 107 371
HIBERNATE 1947 1706 11720 PIPENV 136 857
HIVE 4776 4326 4657 REQUESTS 75 35
JBOSS-T.-M. 331 489 4204 SCIKIT-LEARN 1082 767
KAFKA 639 1149 3423 SCRAPY 112 304
LUCENE 3773 5324 5482 SPACY 55 643
MAVEN 760 574 1381 TORNADO 40 114
RESTEASY 345 228 3866

SPARK 328 7022 1055

SWITCHYARD 451 759 2953

ZOOKEEPER 470 471 900

3.2 Research Questions
The replication study aims mainly at answering the following research questions (RQ):
® RQ1. How effective is TraceScore in identifying bug-relevant source code files?

— RQ1.1 Are we able to replicate the original performance of the TraceScore
component?



— RQ1.2 Does the TraceScore component yield similar performance when applied
to additional Java projects?
— RQ1.3 How does TraceScore perform on Python projects?

® RQ2. How effective is ABLoTS for bug localization?

— RQ2.1 Are we able to replicate the results of the ABLoTS approach?

— RQ2.2 Does the ABLoTS approach yield similar performance when applied to
additional Java projects?

— RQ2.3 How does ABLoTS perform on Python projects?

®* RQ3. How do different composers perform when combining three components?

In our study, RQ1 and RQ2 are adapted from those addressed in the original study,
which involve the main contribution of the Rath et al. study [23]. Specifically, RQ1 is
adapted from the first question of the original study, which evaluates the TraceScore
component. RQ2 is adapted from fourth question of the original study, which evaluates
the ABLoTS approach. For each research question, we analyze two dimensions, namely
1) replicability and 2) generalizability. The core difference of the dimensions is the
dataset being used for evaluation. For the replicability validation, we evaluate on the
same projects with the original study, to see if our replication results are consistent
with the original results. As for the generalizability validation, it can be divided into
two levels. The first level focuses on the same programming language, namely Java,
but on 16 additional projects, to see if the approach is applicable to other projects as
well. The second level extends to different programming language, particularly focusing
on 12 additional Python projects, to see how the approach performs on different
programming languages. The other two RQs in the original study (i.e., second and
third questions) mainly investigate the effectiveness of artifacts selection, which is
irrelevant of our goal, so we do not include them in this study.

Our RQ3 aims at investigating the performance of different composers at combining
the three suspiciousness scores, including fixed weight, Multi-layer Perception (MLP),
DT, RF, LR, CombSUM, CombMNZ, CombANZ, CorrB, and Borda Count. Aside
from merely aiming to improve the composition mechanism, the reason for studying
the composer performance emerges from our finding in RQ2 that the original ABLoTS
composer was trained on leaking data (i.e., the wrong cut-off date for BugCache) and
hence is expected to no longer work effectively when data leakage does not occur. We
are thus interested whether an improved composer may achieve the original ABLoTS
performance or whether the fixed weights from the Amal.gam approach yield the best
possible scoring result.

3.3 Procedure to answer RQ1

This research question mainly focuses on the main contribution of Rath et al., i.e.,
TraceScore for the similar reports component. Since the original source code is not
available, we followed the procedures proposed in the original paper (illustrated in
Section 2.2) as close as possible to duplicate all facets of TraceScore. Specifically, for
each project, we sort all the issues according to the resolved date. Then we split all the
bug reports 80:20, with the latter 20% used as the test set to recommend buggy files.

10



Similar to the original study, we filter the number of related bug reports and
features as well as commits based on age and size from which to obtain a recom-
mendation. For each bug report b in the test set, we consider only bug reports
(and features) b that occurred before bx as determined by the following condition:
b.fixed_date > bx .created_date — 365 days. However, we are of the opinion that there
is another constraint that also should be satisfied: b.fized_date < b x .created_date,
which means that only bug reports fixed belore bx were filed should be retained.
These two settings describe the following two recommendation situations: the former
describes the bug localization mechanism called shortly before fixing the bug, close
to the bug report’s closing date, while the latter describes a recommendation imme-
diately made upon bug creation. For our replication, we were unable to determine
whether the authors only adopted the first constraint (denoted as relazed cut-off date)
or adopted both constraints (denoted as strict cut-off date). We conducted the replica-
tion with both relaxed and strict cut-off date to understand the impact the additional
constraint has on the results. Then, we select bug reports/features requests accord-
ing to the number of modified files identified in their commits. We exclude issues that
modify more than 10 files for bug reports and more than 20 files for non-bug reports.
We then build up the trace graph from these issue subset as shown in Fig. 2 in Step 4.
The edges between the root node bx and other artifacts are calculated using cosine
similarity [46]. When an issue explicitly links to another issue, then the link weight
overrides the cosine similarity and becomes 1. With the trace graph, the TraceScore
between each file node s and bx, TraceScore(s,bx) is calculated. Finally, all the files
according to their tracescore, we will get the ranked list for bx.

Then we evaluate our replication on the two extended datasets. For the extended
datasets, we apply preprocessing (Step 2 in Section 2.2) to be consistent with the
original dataset and to fit the replication. Specifically, for each issue, we preprocess
the text including both summary and description (Step 2 in Section 2.2). We utilize
NLTK library [47] in Python for preprocessing, including stop words removal, camel
case splitting, lower casing, and stemming. Then the preprocessed texts are converted
into TF-IDF [48] vector with the sklearn library [49]. For the source code, we exclude
non-source code files based on the file name extension and only retain source code files
(“*.java” for Extended-Java and “*.py” for Extended-Python). For each file changed
in each commit, the extended dataset contains the old name and the new name for
this file. Following the original study, we only utilize the new name for each file, which
means removed files will be excluded for each commit.

3.4 Procedure to answer RQ2

The ABLoTS approach is essentially an ensemble of three components, namely similar
reports, version history, and code structure, as shown in Fig. 1. As described in the
original study, the ABLoTS approach is an evolved version of AmaLgam [14] with two
main differences: 1) it replaces the similar reports component with TraceScore; and
2) it applies a dynamic suspiciousness score combination (instead of the former static
one). At the time of conducting the replication, there is no available implementation
for the whole framework. We, therefore, replicated the framework along the following
lines.

11



Version History. As mentioned in Section 2.1, the version history component
is implemented by BugCache, which is proposed by Kim et al. [5]. BugCache main-
tains the modification history of files to predict buggy-prone files in the future. It
proved that more recently and frequently modified files are more likely to be buggy
in the future. Rahman et al. proposed a simpler version of BugCache [34], which only
maintains a short history of file modification. Google’s developers adapted Rahman et
al.’s algorithm on their large systems [50, 51]. AmaLgam adapted Google’s well-tested
algorithm with a version history component. We reused Amal.gam’s implementation
of BugCache,® but made the following modifications:

1. The BugCache version used in Amal.gam was written in Java, while we manually
translated it to Python to be compatible with our implementation.

2. In their paper, Wang et al. [14] explain that the approach identifies commits that
are committed 15 days before the new bug report is created. However, after checking
the source code, we found that the implementation utilized the bug report’s resolved
date as the cut-off date to obtain previously committed commits within 15 days.
We contacted the authors, and they agreed that the bug report’s creation dates
should have been adopted. Therefore, in our implementation, we used the creation
date for all our experiments.

3. To identify bug-fixing commits, Wang et al. proposed that commit logs should
match regular expression regex: (.*fiz.*)|(.*bug.*). Considering that some pro-
gramming languages (e.g., Java and Python) are case-sensitive, we firstly convert
commit logs into lowercase, which is missing in the original implementation. What
is more, according to our observation of the dataset, some bug-fixing commit logs
may not contain keywords like “fix” or “bug”. However, they might start with the
bug report’s ID. To this end, we also include commits that start with any bug ID in
their logs, to identify bug-fixing commits more accurately. AmaLgam’s authors also
agree with us on this. This adapted selection of commits only affects the commits
used for BugCache, but not any other component in ABLoTS.

Code Structure. Code Structure metrics are obtained with BLUIR [19], which
calculates the similarity between a new bug report and the code structure of a source
code file. It takes the summary and description of a bug report as two separate parts
and extracts class names, method names, variable names, and comments of a source
code file represented as an Abstract Syntax Tree (AST). Then it indexes and searches
buggy files based on the Indri toolkit [52]. In this paper, instead of replicating our own
BLUIR tool, we used the implementation® from an empirical study by Lee et al. [24]
to obtain the Susp®(s,b*) score. Lee et al. implementation were originally designed
for Java language. Since our experiments also involve Python files, we parsed Python
files with the AST module to extract the code structure. Then we used the Indri® tool
to calculate the similarity between bug reports and code structure of Python files.

Composer. ABLoTS applied the J48 DT with default pruning settings to classify
source code files for bug reports. Specifically, for each bx, there are multiple candidate
source code files s for recommendation. For each (s,b*), there will be a label C' €

Shttps:/ /sites.google.com/view/mambalab/projects/amalgam
4https://github.com /exatoa/bench4bl
Shttps:/ /sourceforge.net /projects/lemur /files/lemur/

12



{true, false} indicating whether the file s is modified to fix b or not. For training, the
classifier takes the Susp®(s, bx), Susp™ (s, b*), and Susp® (s, b*) scores for each (s, b*)
as feature and C' as the label. For test data, instead of outputting a label indicating
true or false, the probability of s being true (i.e., s is modified by bx) is utilized. Then
for each bx, all the files are ranked according to the probability score.

For each project, Rath et al. sorted all the bug reports by resolved date and took
the first 80% bug reports as training data, and the remaining 20% as test data. To
mitigate the influence of imbalanced training data, ABLoTS used Weka’s sub-sampling
to under-sampling the training data.

Since our replication is based on Python, we chose the popular open source Python
library sklearn [49] for the DT classifier, and RandomUnderSampler in the Imblearn
library [53] for under-sampling. Essentially they are the same algorithm with the
original study, but just implemented by different libraries. We assume that this will
not cause significant difference to the result as we used exactly the same training
data as in the original paper (i.e., rather than sampling our own set of training data
we utilized the precalculated suspiciousness scores and classification result from the
replication package to obtain a trained DT).

We applied the same procedure on the original dataset and the extended datasets.
After completing the replication of the entire framework on the original dataset, we
assess the performance of ABLoTS on the extended Java and Python datasets to
evaluate how it performs.

3.5 Procedure to answer RQ3

Rath et al. [23] chose DT as the composer and claimed that DT outperformed fixed
weight utilized by AmaLgam [14, 17]. The essence of ABL0TS lies in adopting an
aggregation strategy, where the three different scores: Susp®, Susp™, Susp® for each
<bx, s> pair are aggregated to obtain the final relevance score. Since there also exist
other supervised and unsupervised aggregation strategies, in this study, we would
like to explore the performance of different strategies, including unsupervised: fixed
weight, CombSUM [54, 55], CombMNZ [54, 55], CombANZ [54, 55], CorrB [56] and
Borda count [57], and supervised: MLP, DT, RF and LR. CombSUM, CombMNZ,
CombANZ, and Borda count are also rank fusion methods that have been investigated
for fusing fault localizers [58]. Different methods may be more suitable for different
scenarios. Thus, it is important to choose the most appropriate aggregation approach.

Fixed Weight has been proved to be effective for IRBL [14, 17, 22]. The suspi-
ciousness score for the source code file s is calculated according to Eq. 6 and Eq. 7,
where the value of a and b are set to 0.2 and 0.3 as per prior work.

Susp™(s) = ax Susp™(s) + (1 — a) * Susp®(s) (6)

Susp™ 3 (5) = b« Susp™ (s)+
(1 — b) * Susp™(s)

13



CombSUM [54, 55] is a simple rank fusion method where the scores of documents
from different lists are summed, and the documents are ranked based on the total
sum. While straightforward, CombSUM assumes that all methods contribute equally,
which may not always be the case.

CombANZ is another rank fusion method that combines different scores by
computing the average of the non-zero scores.

CombMNZ [54, 55] is a variant of CombANZ. It involves multiplying the summa-
tion of scores for a given element by the number of techniques that assign a non-zero
score to that element.

CorrB [56] is a correlation-based method that calculates the weight of a technique
by assessing the overlap of its list of the top-N most suspicious program elements with
lists generated by other techniques.

Borda Count [57] is a popular rank fusion method. In Borda count, each doc-
ument in a ranked list receives a score equal to the sum of the positions it holds in
the individual lists. The document with the highest Borda score is ranked first in the
integrated list.

Apart from the above explained unsupervised rank fusion methods, there are also
supervised methods that have been used to learn feature importance for classification
problems. In this study, we use the commonly used classification algorithms: MLP,
RF and LR. For each bug report and source code file pair <bk,s>, if s is related to
bx, then the ground truth is set to be 1, otherwise 0. The optimization function of
classification algorithms is to learn if s is related to bx.

4 Results and Discussion

We present below the results of our replication study, organized for answering each
RQ. Then, we discuss the overall findings and implication or our work.

4.1 RQ1. How effective is TraceScore in identifying
bug-relevant source code files?

RQ1.1: Replicability. We carried out the replication according to Section 3.3.
Results on the original dataset are as shown in Table 3. The performance impact of
using the strict cut-off date is on average around 17% lower than using the relazed
cut-off date.

To find out which implementation most likely was adopted by the original imple-
mentation, we performed a pairwise t-test on the 11 projects, comparing both
replication results against the reported results in [23] to establish statistically whether
these results can be considered to be the same. According to the pairwise t-test, the
relaxed cut-off date is closer to the original implementation. The pairwise t-test results
presented in Table 4 show that for MRR, Topl, Top5, and Topl0, there is no signif-
icant difference while for MAP. Thus, we have to reject the null hypothesis for the
relaxzed cut-off date: the average MAP reported by Rath et al. is 32% higher than our
replication result. For the remaining four evaluation metrics, there is no significant
difference, with the mean values are statistically the same. So we conclude that with
the relaxed cut-off date TraceScore can be considered replicable, while with the strict

14



Table 3 TraceScore performance on the original dataset.

Relaxed Cut-off Date

PROJECTS MAP MRR Topl Topb5 Top 10
DERBY 0.124 0.240 0.149 0.340 0.404
DROOLS 0.183 0.383 0.276 0.502 0.615
HORNETQ 0.134 0.241 0.130 0.352 0.481
1ZPACK 0.170 0.229 0.156 0.328 0.422
KEYCLOAK 0.125 0.234 0.152 0.323 0.418
LOG4J2 0.182 0.271 0.191 0.360 0.416
RAILO 0.138 0.202 0.117  0.267 0.350
SEAM2 0.134 0.195 0.141 0.244 0.288
TEIID 0.194 0.278 0.188 0.385 0.465
WELD 0.102 0.208 0.098 0.312 0.420
WILDFLY 0.108 0.185 0.116 0.268 0.326
Average 0.145 0.242 0.156 0.335 0.419
Strict Cut-off Date

PROJECTS MAP MRR Topl Topb5 Top 10
DERBY 0.084 0.158 0.096 0.219 0.272
DROOLS 0.171 0.37 0.265 0.467 0.603
HORNETQ 0.105 0.207 0.093  0.315 0.444
1ZPACK 0.101 0.152 0.094 0.219 0.297
KEYCLOAK 0.081 0.16 0.082 0.241 0.323
LOG4J2 0.165 0.256 0.18 0.315 0.382
RAILO 0.131  0.194 0.117 0.25 0.35

SEAM2 0.099 0.159 0.103 0.212 0.263
TEIID 0.140 0.222 0.135 0.331 0.412
WELD 0.103 0.201 0.098 0.304 0.411
WILDFLY 0.085 0.146  0.087 0.217 0.268
Average 0.115 0.202 0.123 0.281 0.366

cut-off date it cannot be considered replicable, since we cannot achieve statistically

comparable or better results.

To give benefit to doubt, we adopted the relaxzed cut-off date for the remainder
of the replication and generalization investigations. However, in practice, the choice
between relaxed cut-off date and strict cut-off date is artificial as only commits avail-
able at the time the bug localization mechanism is applied are considered for producing

the recommendation.

Table 4 Pairwise t-test between relax constraint result
and original result.

Pairs

Metrics Original  Replication Deviation P value
MAP 0.191 0.145 0.05 0.000**
MRR 0.248 0.242 0.01 0.522
Top 1 0.163 0.156 0.01 0.407
Top 5 0.336 0.335 0.00 0.924
Top 10 0.419 0.419 0.00 0.99

*p <0.05 **p <0.01

15



RQ1.2 & RQ1.3: Generalizability. The evaluation results based on the
extended Java and Python dataset are shown in Table 5. The average MAP, MRR,
Top 1, Top 5 and Top 10 are 18.3%, 28.4%, 19.6%, 38.4%, 47.3% on Java dataset,
and 25.6%, 34.6%, 23.5%, 48.4%, 59.2% on Python dataset, respectively. The average
results are around 20% (Top 1) ~ 40% (MAP) higher on Python projects than on
Java projects. The MAP values ranges from 4.4% to 32.5% in the Java dataset, and
from 5.2% to 50.5% in the Python dataset. The MRR values stretches from 11.4% to
47.3% for the Java dataset, and lies between 11.4% and 56.9% for the Python dataset.

Table 5 TraceScore performance on the extended datasets.

Extended-Java dataset

PROJECTS MAP MRR Topl Top5 Top 10
ARCHIVA 0.134 0.22 0.147 0.28 0.413
CASSANDRA 0.218 0.333  0.222  0.453 0.551
ERRAI 0.059 0.15 0.093  0.204 0.296
FLINK 0.18 0.305 0.207 0.415 0.522
GROOVY 0.325 0.393 0.271 0.522 0.625
HBASE 0.236  0.352 0.25 0.455 0.561
HIBERNATE 0.118 0.231 0.172 0.3 0.359
HIVE 0.264 0.38 0.267 0.506 0.599
JBOSS-T.-M. 0.136 0.247 0.164 0.373 0.433
KAFKA 0.296  0.473  0.367  0.578 0.688
LUCENE 0.201 0.32 0.228 0.419 0.494
MAVEN 0.162 0.222 0.132 0.316 0.382
RESTEASY 0.101 0.202 0.101 0.348 0.435
SPARK 0.31 0.383  0.273  0.545 0.576

SWITCHYARD 0.044 0.114 0.088 0.121 0.198
ZOOKEEPER 0.149 0.226 0.149 0.309 0.436

Average 0.183 0.284 0.196 0.384 0.473
Extended-Python dataset
PROJECTS MAP MRR Topl Topb5 Top 10
CERTBOT 0.264 0.369 0.235 0.500 0.706
COMPOSE 0.325 0.423 0.290 0.548 0.677
DJANGO.R._F. 0.505 0.555 0.484 0.613 0.710
FLASK 0.279 0.365 0.182 0.636 0.727
KERAS 0.149 0.171 0.091 0.273 0.455
MITMPROXY 0.133 0.247 0.182 0.364 0.409
PIPENV 0.310 0.569 0.464 0.714 0.786
REQUESTS 0.328 0.343 0.200 0.600 0.600
SCIKIT-LEARN  0.305 0.373 0.290 0.465 0.530
SCRAPY 0.190 0.297 0.217 0.304 0.522
SPACY 0.235 0.321 0.182 0.545 0.727
TORNADO 0.052 0.114 0.000 0.250 0.250
Average 0.256 0.346 0.235 0.484 0.592

In order to confirm if there is a difference between the distribution of the original
results and extended results, we leverage the two-sample Kolmogorov-Smirnov test (K-
S test) [59], which is used to test whether two samples come from the same underlying
one-dimensional probability distribution. For each evaluation metric, we perform a
two-sample K-S test, with one sample being the results from the original dataset and

16



the other sample being the results from one of the two extended datasets. Results are
shown in the “TraceScore-J” and “TraceScore-P” columns of Table 6 for the Extended-
Java dataset and the Extended-Python dataset, individually. On the Extended-Java
dataset, all the p-values are greater than 5%, indicating that the two samples come
from the same distribution. For the Extended-Python dataset, however, all the p-values
are less than 5%, thus we cannot assume that the two samples come from the same
distribution. The box plot in Fig. 3 shows the data value on all five metrics, {rom which
we can see that on the Extended-Java dataset, TraceScore yields slightly higher median
and wider variations, while on the Extended-Python dataset, TraceScore yields much
higher median, maximum, and minimum, which indicates TraceScore yields higher
performance on the Extended-Python dataset than on the original Java dataset. The
average over the Extended-Java dataset is about 12% (Top 10) ~ 27% (MAP) higher
than on the original dataset, while that of the Extended-Python dataset is about 41%
(Top 10) ~ 77% (MAP) higher than on the original dataset.

We also investigate the improvement of TraceScore over the same baseline as in
the original paper.® With SimiScore [16] as baseline, we obtain the improvement of
TraceScore over SimiScore on both original and Extended-Java dataset. The “Improve-
ment” column of Table 6 shows the results of the K-S test. Given the p-values, the
improvement of MRR, Top 1, and Top 10 on the original dataset and the extended
dataset are very likely to come from different distributions. To this end, from the box
plot in Fig. 4 for improvement, we can observe a much higher median, maximum, and
minimum, which indicates TraceScore yields higher performance improvement on the
Extended-Java dataset.

We can therefore conclude that the performance of TraceScore also holds for
a larger Java dataset or for another Python dataset, and we gain confidence that
TraceScore’s performance is generally achievable.

Table 6 K-S test result.

TraceScore-Java TraceScore-Python Improvement
Metrics K-S test P value K-S test P value K-S test P value
MAP 0.438 0.124 0.667 0.004 0.500 0.054
MRR 0.409 0.175 0.659 0.006 0.693 0.002
Top 1 0.409 0.175 0.561 0.039 0.625 0.007
Top 5 0.409 0.175 0.576 0.023 0.443 0.115
Top 10 0.415 0.159 0.659 0.006 0.540 0.028

Answering RQ1: Under the relax cut-off date constraint, TraceScore is replicable
and also can be generalized to both Java and Python extended datasets. How-
ever, under the strict cut-off date constraint, we cannot claim replicability as the
performance is significantly lower than reported.

Since the main improvement of TraceScore over SimiScore lies in the leveraging of requirements and
traceability information, but there is no such information in Extended-Python dataset, we do not compare
the improvement over the Extended-Python dataset

17



Score

0.8

0.7 4

0.6

0.5 4

0.4 -

0.3 4

0.2 A

0.0 4

O_I_QT

0:Original data set
E-J: Extended-Java data set
E-P: Extended-Python data set

=
Al e
1]

. 07

o

| o — |

0 EJEP

O E-J E-P
Top 1

0 EJEP

MAP MRR

O E- EP
Top 5

O E-J E-P
Top 10

Fig. 3 Box plots of TraceScore on original and extended Java and Python datasets.

Score

O: Original data set

0.20q9 E-J: Extended-Java data set
0.15 o H
0.10 A o ﬁ ]
0.05 - )
0.00 - =
(o)
—0.05 A 1o [e]
—0.10 - o
—0.15 A o
o
—0.20 +— T T T T T T T T T
0O E-J O E-J O E-J O E-J O E-J
MAP MRR Top 1 Top 5 Top 10

Fig. 4 Box plots illustrating the improvement of TraceScore over SimiScore on both the original
and extended Java datasets.

4.2 RQ2. How effective is ABLoTS for bug localization?

RQ2.1: Replicability. ABLoTS’s performance results on the original dataset are
shown in Table 7. Compared to the results reported in the original paper (cf. Table 1)
we observe that our replication produces far worse results. MAP and MRR are below
10% for most projects. ABLoTS, which combines three scores, namely Susp®, Susp™,
and Susp®, does not even achieve the same results as the single Susp®™ score. This

18



counterintuitive result motivated us to investigate in more detail how this outcome
can be explained.

For the strict replication, we trained the DT on the intermediate three scores (i.e.,
Susp®, Susp™, Susp”) made available by Rath et al. in their replication package,
For comparison, we also trained a separate DT from our own sample of files, their
suspiciousness scores, and bug reports. Note that the original replication package just
provided tuples of suspiciousness scores and classification results, but not which bug
report, and which files were used to obtain those suspiciousness scores. We, however,
applied the same sampling criteria.

We inspected the original DT (i.e., the one obtained from the replication data) to
obtain the average feature importance (non-normalized) of each component: 0.037 for
BLUiR, 0.377 for BugCache, and 0.018 for TraceScore. This indicates that BugCache
almost exclusively determines the final classification result. In contrast, in the Amal.-
gam approach, which was used as a baseline for ABLoTS, the authors empirically set
fixed weights for the three suspiciousness scores, which are 0.56 for BLUiR, 0.3 for
BugCache and 0.14 for TraceScore. Our DT trained from scratch exhibited the fol-
lowing (non-normalized) feature importance: 0.243 for BLUIR, 0.007 for BugCache,
0.037 for TraceScore, which still does not yield as good results (see Table 7) as the
fixed weights determined for Amal.gam.

This discrepancy in feature importance values helped us identify the root cause
for the difference in performance results. Rath et al. adopted the implementation of
BugCache by Wang et al. [14], where the bug report’s fixed date was utilized for
the cut-off date, as shown in Fig. 5. If one or more bug-fixing commits occurred
within 15 days prior to the fixed date, BugCache would recommend the files within
these commits (i.e., potentially exactly those files that were changed to fix the bug).
However, in a realistic bug localization situation, any file recommendation would only
be useful before any of those commits. Thus, for correct evaluation, these commits
must not be used.

Fig. 5 illustrates such a situation. There is a bug report “HORNETQ-1301” created
on 2014-01-09, and fixed on 2014-01-14. Two commits cg and c; were committed to
fix this bug between the created date and fixed date, on 2014-01-09. When BugCache
adopts the fixed date as the cut-off date and identifies bug-fixing commits within 15
days, then c4, cs5, cg, and c¢7 would be taken into consideration and result in a high
Susp™ score, according to Eq. 1. Doing so, the DT would learn that the scores by
BugCache are very indicative of the actual classification result and hence assign it a
high feature importance. However, in practice, cg and c¢; are unknown for predicting
bug report “HORNETQ-1301", they are foreknowledge about the bug. The right way
of implementing BugCache is using the creation date, or any date before the bug’s
first partial fix implementation. After contacting the authors of both ABLoTS and
Amal.gam, Amal.gam’s authors stated that they agreed with our finding and that they
adopted the wrong date, while authors of ABLoTS stated that they directly reused
AmalLgam’s implementation.

The incorrectly derived Susp™ scores thus greatly boost the result of the DT.
When we utilized BugCache in the correct manner (i.e., use the created date as the cut-
off date), DT did not yield results even close to the original performance (even when

19



applying hyperparameter tuning). For comparison, we adopted Amal.gam’s composer
with a fixed weight for each component: 0.56 for BLUiR, 0.3 for BugCache, and 0.14
for TraceScore. The results of the fixed weight composer are shown in Table 8, the
average MAP, MRR, Top 1. Top 5, and Top 10 are 29.8%, 43.3%, 32%, 56.3% and
64%, respectively. Compared to TraceScore, the results have been improved by 105.8%,
78.7%, 105.2%, 68.4%, and 52.9%, respectively.

Aside from the DT feature importance values, a second discrepancy emerged when
we investigated the evaluation dataset. In the replication package, the intermediary
suspiciousness scores were provided not only as a training set for the DT but also as an
evaluation set (i.e., the remaining 20%). When we trained and evaluated with these two
datasets, we could replicate the results. However, as outlined above, when obtaining
the suspiciousness scores ourselves, we could not. The discrepancy we found was that
the evaluation dataset contained far fewer evaluation data points (i.e., suspiciousness
scores with their classification ground truth) than these projects contained source
code files. In other words, for a particular bug, not all source code files were utilized
for evaluation but just a subset. Across all projects, the number of candidates ranges
from 60 to 70, regardless of actual number of files in the respective project. For the
project HORNETQ), for example, even when we select only files for which a TraceScore
suspiciousness score and a BLUiR suspiciousness score exist, we obtain around 4500 file
candidates. In addition, for some of these files the evaluation dataset does not provide
any of the three suspiciousness scores at all, just the classification result. Hence, we
could not establish how these file candidates have been filtered and why only a subset
has been chosen. The paper does not describe this aspect, but rather refers to the
evaluation design of Amalgam.

In summary, we found that ABLoTS adopted the wrong cut-off date for BugCache
due to having reused the component and configuration from Amal.gam without fur-
ther investigation, resulting in the incorrect Susp™ scores. Hence, we conclude that
ABLO0TS performance cannot be replicated.

Table 7 ABLoTS performance on original dataset.

PROJECTS  MAP MRR Topl Top5 Top 10

DERBY 0.076 0.111 0.02 0.171 0.326
DROOLS 0.049 0.06 0.023 0.054 0.097
HORNETQ 0.057 0.067 0 0.056 0.185
IZPACK 0.086 0.11 0.016 0.172 0.375
KEYCLOAK  0.029 0.05 0.006 0.044 0.101
LOG4J2 0.065 0.072 0.011 0.067 0.146
RAILO 0.06 0.077 0 0.1 0.283
SEAM2 0.08 0.105 0.019 0.179 0.333
TEIID 0.056 0.079 0.015 0.104 0.231
WELD 0.02 0.024 0 0.018 0.027
WILDFLY 0.03 0.04 0.007 0.036 0.087
Average 0.055 0.072 0.011 0.091 0.199

RQ2.2 & RQ2.3: Generalizability. Since the evaluation results of the origi-
nal paper presenting ABLoTS are not replicable, exploring its performance on the
extended dataset for generalizability evaluation would yield little insight. However, in

20



created date fixed date

! i 2014-01-09 14:47:53 2014-01-14 08:18:39
5 i . ~
:' non bug-fixing commits | ;
: | i Bug Report: ;
P ' | HORNETQ-1301 |

i 15days N

i {fi, 6} {6}

e 06 -
Time Line

G5 {66} £, £}

i 2014-01-09 14:49:34 !
Created date<——> Fixed date «—» !
2014-01-09 15:27:41

Fig. 5 BugCache using created date VS using fixed date.

Table 8 Fixed weight composer on original dataset.

PROJECTS  MAP MRR Topl Top5 Top 10

DERBY 0.312 0.478 0.36 0.615 0.725
DROOLS 0.272 0.464 0.339 0.607 0.712
HORNETQ 0.37 0.555 0.426 0.704 0.778
IZPACK 0.37 0.493 0.391 0.594 0.672
KEYCLOAK  0.234 0.377 0.247 0.525 0.595
LOG4J2 0.391 0.541 0.416 0.719 0.753
RAILO 0.286 0.398 0.267 0.567 0.65

SEAM2 0.339 0.402 0.308 0.532 0.583
TEIID 0.12 0.169 0.1 0.208 0.296
WELD 0.252 0.445 0.33 0.562 0.634
WILDFLY 0.334 0.441 0.333 0.565 0.645
Average 0.298 0.433 0.320 0.563 0.640

order to explore how TraceScore would perform when jointly used with the other two
components, like in AmaLgam [14, 17], we applied a fixed weight to aggregate the
three scores. That is, the suspiciousness score for the source code file s is calculated
according to Eq. 7, where the value of a and b are set to 0.2 and 0.3 as per prior work.

The results of fixed weight are shown in Table 9. On the additional 16 Java projects,
the fixed weight composer can achieve an average MAP, MRR, Top 1, Top 5, Top 10
as 34.4%, 47.7%, 35.6%, 62.1% and 71.4%, which improves over the single TraceScore
by 87.8%, 67.8%, 81.8%, 61.6% and 50.8%, respectively. Compared to the results on
the original dataset, the average evaluation results over the extended dataset are 10%
~ 16% higher (e.g., the average MAP is 34.4 vs 20.2). On the additional Python
projects, the average MAP, MRR, Top 1, Top 5, and Top 10 are 43.5%, 55.1%, 43.9%,
68.8% and 78.5%, respectively, which are around 10% (Top 10) ~ 26% (MAP) higher
than the average of additional Java projects. K-S test (Table 10) shows that on the

21



extended Java dataset, all the p-values are greater than 5%, so we should reject the
hypothesis that the two samples come from different distributions. On the extended
Python dataset, all the p-values are less than 5%, thus the hypothesis that the two
samples come from different distributions should be assumed to be true. According to
the box plot in Fig. 6, we can see that on the extended Java dataset, the distribution
of each metric is more concentrated, more similar, and the mean values are closer. On
the extended Python dataset, the distribution of each metric is more dispersed, with
wider ranges, but the mean is significantly higher than that of the other two Java
datasets.

Based on the results and analysis, we can conclude that the performance of the
fixed weight composer also holds for a larger dataset, and we gain confidence in its
generalizability.

1.0 4

0:Original data set
E-J: Extended-Java data set
E-P: Extended-Python data set

0.8

0.6

Score
L I
[¢]
H}+—o0
T

0.4 -

H T H
—{
H T
\
o
o
©

0.2 o
o
o)

[¢]

° o

O EJEP OEJEP OFEJEP OEJEP O EJEP
MAP MRR Top 1 Top 5 Top 10
Fig. 6 Box plots of fixed weight on original and extended Java and Python datasets.

Answering RQ2: The reported results of ABLoTS are not replicable, because of
the incorrect use of the cut-off date in the BugCache component and the sub-optimal
configuralion of the composer. Consequently, we did nol check the generalizabilily of
ABLoTS, since applying an incorrect technique would provide little useful insight.
However, with a fixed weight scheme, the results are generalizable on the extended
dataset.

4.3 RQ3. How do different composers perform when
combining three components?

To assess the performance of different composers in combining three components, we
employed both supervised and unsupervised methods, including DT, MLP, RF, LR,
fixed weight, CombSUM, CombMNZ, CombANZ, CorrB, and Borda Count, as the

22



Table 9 Fixed weight composer performance on the extended

datasets.
Extended-Java dataset
PROJECTS MAP MRR Topl Top5 Top 10
ARCHIVA 0.322 0.477 0.347 0.587 0.667
CASSANDRA 0.335 0.462 0.330 0.622 0.741
ERRAI 0.310 0.505 0.389 0.630 0.722
FLINK 0.416 0.560 0.456 0.670 0.752
GROOVY 0.388 0.458 0.331 0.618 0.726
HBASE 0.398 0.528 0.398 0.697 0.778
HIBERNATE 0.234 0.400 0.290 0.551 0.626
HIVE 0.357 0.483 0.343 0.647 0.746
JBOSS-T.-M. 0.370 0.536 0.403 0.701 0.791
KAFKA 0.474 0.623 0.516 0.742 0.844
LUCENE 0.321 0.466 0.336 0.624 0.710
MAVEN 0.337 0.416 0.296 0.546 0.671
RESTEASY 0.257 0.391 0.275 0.536 0.638
SPARK 0.406 0.496 0.379 0.606 0.712

SWITCHYARD 0.160 0.300 0.220 0.407 0.462
ZOOKEEPER 0.422 0.537 0.383 0.745 0.830

AVERAGE 0.344 0.477 0.356 0.621 0.714
Extended-Python dataset

PROJECTS MAP MRR Topl Top5 Top 10
CERTBOT 0.124 0.25 0.176 0.294 0.353
COMPOSE 0.349 0.465 0.29 0.677 0.806
DJANGO_R._F. 0.578 0.637 0.548 0.742 0.871

FLASK 0.674 0.762 0.636 0.909 0.909
KERAS 0.488 0.523 0.455 0.545 0.818
MITMPROXY 0.43 0.551 0.409 0.818 0.909
PIPENV 0.393 0.687 0.571 0.786 0.964
REQUESTS 0.502 0.551 0.4 0.8 0.933
SCIKIT-LEARN  0.422 0.533 0.41 0.668 0.747
SCRAPY 0.481 0.667 0.565 0.783 0.87

SPACY 0.169 0.271 0.182 0.364 0.364
TORNADO 0.606 0.714 0.625 0.875 0.875
Average 0.435 0.551 0.439 0.688 0.785

composer component. The average results of each composer across the three datasets
are presented in Table 11. The box plots for different composers on the three datasets
are depicted in Fig. 7, Fig. 8, and Fig. 9, respectively. From the table, we observe that
LR, CombSUM, and fixed weight consistently achieve superior results compared to
other composers. LR attains the best average outcomes on the original Java dataset
and the extended Python dataset. Conversely, DT exhibits the poorest results across
all three datasets, with RF following closely behind. Results are even worse than pure
TraceScore. This indicates that the contributions of different component scores are
linear, which LR, fixed weight, and CombSUM can model effectively due to their
ability to handle linear relationships and lower risk of overfitting. In contrast, RF and
DT, being tree-based structures, may struggle to fit the component scores effectively
with their decision tree-based splits, which could compromise their performance.

To visualize the performance of various composers, we generated the heatmap
shown in Fig. 10. This heatmap details the top-performing composer for each project

23



Table 10 K-S test result of Fixed Weight.

Fixed Weight-Java Fixed Weight-Python
Metrics K-S test P value K-S test P value
MAP 0.313 0.452 0.750 0.001
MRR 0.295 0.512 0.568 0.031
Top 1 0.210 0.856 0.568 0.031
Top 5 0.443 0.115 0.583 0.017
Top 10 0.358 0.289 0.750 0.001

across different evaluation metrics. Analysis of the heatmap reveals that, across all
projects and the five evaluation metrics, LR demonstrated the highest performance
on 68 cases, closely followed by CombSUM with 64 instances. Interestingly, DT never
attained the top-performing result. In summary, however, there is no composer that
consistently performs best across all projects.

Based on the results above, the question that arises is: for real-world scenarios,
which composer to select? The choice of a composer depends on the characteristics of
the data, the nature of the retrieval methods, the relationship between the contribu-
tions of different components, and other desired aspects. Therefore, it is recommended
to experiment with different composer methods (especially those good at handling lin-
ear relationships) and evaluate their performance to determine which one works best
in a specific application context.

Across all composers, the average results on the extended Python dataset surpass
those on the extended Java dataset, which, in turn, outperform the results on the orig-
inal dataset. The MAP and MRR on the Python dataset reach as high as 44% and
56.2%), respectively. This result suggests that bug localization might be easier on the
Python dataset than on the Java dataset. Moreover, we observed that Python projects
have a smaller size, as measured by the number of source code files, in comparison to
Java projects. This observation instigated an exploration into whether a correlation
exists between bug localization accuracy and project size. Table 12 presents the Pear-
son correlation between project size and localization accuracy across all 39 projects.
Given that all the p-values are greater than 0.05 (except for MAP of LR), we are
unable to reject the null hypothesis. There is insufficient evidence to assert the pres-
ence of a significant effect or relationship between localization accuracy and project
size.

Answering RQ3: Among all the composers, LR, CombSUM, and fixed weight
demonstrate favorable performance across the three datasets, while DT and RF sig-
nificantly lag behind other composers. Hence, we highlight thal the original fized
weights introduced in AmaLgam provide a simple, immediately applicable composi-
tion configuration for most settings. Nevertheless, it is advisable to explore various
methods in order to select a composer based on specific situations.

4.4 Discussion

Overall, as shown in Table 13, our experimental results suggest that TraceScore is
replicable under relaxed cut-off date constraint, but, non-replicable under

24



Table 11 Average Results of Different Composers.

Original Java dataset
MAP MRR Topl Top5 Top 10

LR 0.302 0.435 0.321 0.561 0.650
CombSUM 0.300 0.433 0.321  0.566 0.643
Fixed Weight  0.298 0.433 0.320 0.563 0.640
MLP 0.298 0.430 0.316 0.560 0.642
CorrB 0.289 0.418 0.303 0.550 0.634
CombMNZ 0.277 0.416 0.314 0.527 0.627
Borda Count 0.219 0.356 0.262 0.464 0.543
CombANZ 0.195 0.292 0.191 0.387 0.479
RF 0.179 0.279 0.161 0.394 0.526
DT 0.056 0.077 0.023 0.090 0.171

Extended-Java dataset
MAP MRR Topl Topb5 Top 10
CombSUM 0.359 0.498 0.379 0.641 0.729
Fixed Weight  0.344 0.477 0.356 0.621 0.714

LR 0.342 0.473 0.352 0.615 0.711
CombMNZ 0.330 0.473 0.353 0.609 0.700
CorrB 0.337 0.466 0.344 0.609 0.710
MLP 0.300 0.417 0.304 0.541 0.641
Borda Count 0.257 0.396 0.293 0.515 0.590
CombANZ 0.247 0.353 0.240 0.474 0.589
RF 0.203 0.295 0.170 0.428 0.564
DT 0.064 0.083 0.015 0.121 0.225

Extended-Python dataset
MAP MRR Topl Top5 Top 10

LR 0.440 0.562 0.449 0.693 0.794
Fixed Weight  0.435 0.551 0.439 0.688 0.785
CorrB 0.430 0.538 0.414 0.682 0.787
CombSUM 0.426 0.535 0.429 0.646 0.756
MLP 0.414 0.519 0.394 0.672 0.776
CombMNZ 0.397 0.516 0.415 0.651 0.744
CombANZ 0.334 0.427 0.298 0.599 0.691
Borda Count 0.321 0.417 0.298 0.535 0.672
RF 0.233 0.332 0.196 0.485 0.635
DT 0.177 0.222 0.079 0.394 0.565

strict cut-off date constraint, where the former can achieve better results. How-
ever, in actual applications, the choice between relaxed cut-off date and strict cut-off
date is flexible, as commits available at the time when developers perform bug-fixing
tasks will be considered for recommendation.

On the extended dataset, TraceScore also yields similar results compared with on
the original dataset, which demonstrates that TraceScore possesses good gener-
alizability. However, the results vary more (i.e., some projects exhibit much higher
performance, other projects exhibit even lower performance), which means it is not
possible to accurately predict the performance of TraceScore on a new project. Addi-
tional investigations are necessary to understand when TraceScore is expected to
perform well and under which conditions TraceScore will not yield a lot of benefits.

ABLOTS, in contrast, is not reproducible for two main reasons: 1) the authors
reused the wrong BugCache implementation from Wang et al. [14] (we confirmed the

25



Original-Java Dataset

LiLogistic Regression
F:Fixed Weight *
5:CombSUM

P:MLP

cComs * x
M:CombMNZ
8:Borda Count
ACOmbANZ
ReRandom Forest

%
[
il
[
P
i

D:Decision Tree
0.6
#

i

-

o e
-
S )
L e

T

—

—

i

It
e
=
D e
"

o = ]

P e
-
B
Bt
T

1 P !
| T ! i
¢ _ i T, [
o417+ T 1 H VLT | I i
17 ] L | * Lity
R i H g ' D g T f
- PTIIT 3 i
. i ! b o .
I‘*:l\_g T ! o ‘18 3 *a*a”w N T
02{ | i *oa L aawll | i
i i ' H P i i
- * L& a l 2T i % 4 4
* R E N S
g - |
L |
|
0.0 B
LFSPCMBARD LFSPCMBARD LFSPCMBARD LFSPCMBARD L FSPCMBARTD
MAP MRR Top 1 Top 5 Top 10
Fig. 7 Performance of Different Aggregation Methods on Original Java Dataset.
Extended-Java Dataset
Tiogistc Regression
F:fixed Weight * * &
5:CombSUM o *
P:MLP Tridl T
081 - ceans N I
M:CombMNZ # T ! T
B:Borda Count T I -
ACombANZ b T (14
RiRandom Forest i I i i
D:Decision Tree | Lo T J T
S i LA ;
I : il
06 [N ! T
[ 1] i ~ |74 T ' ! *
bl Tl mae] SR R B 1l
Tt i « el L
e | 1T . I * Pl
g BE 7 il
& § 1 il Tl i - : i P17 w * % i * i
04 Lo i P . * {1 -
. ! i ! w0l "
SEITTI 0 g | *
7 i
7 i I - i
LT T e PoNT R | 1
Pl i 8 | i [ | i i
[ [ i [ i< i | *
| 1 ! i Law || b g B ® 1
02{ | ki ! i *
- i . T % i I
kK ox | i 1 ! i
[ |
i i L g 8 i T H
1 #
i T
0.0 E

LFSPCMBARD LFSPCMBARD L FSPCMBARD L FSPCMBARTD L FSPCMBARD
MAP MRR Top 1 Top 5 Top 10

Fig. 8 Performance of Different Aggregation Methods on Extended Java Dataset.

incorrect use with Wang et al.), which results in the BugCache score greatly boosting
the final result; 2) when we adopt the correct BugCache score, we could not duplicate
the DT composer because of a lack of details in the original study. We are skeptical
whether DT is the right choice for the composer, as also different sampling strategies
and hyperparameter tuning yielded a performance worse than the static composer

26



Extended Python Dataset

L:Logistic Regression
10 F:Fixed Weight T i
S:CombSUM [
PMLP (A A
C:CorrB T i BT T 7 T ! ] 1
M:CombMNZ [ ! ! i i Ik 1
B:Borda Count [ o |
08 ACombANZ H - G i | H
N R:Random Forest i : Py i
D:Decision Tree 1T i gl il i
i i H i T *
i it T i i i
T . i i1 i1 ! | i
Pio ! D . : ' |
06 [ ! [ R O I ! il | i
o i i P | H i i
[ |y [ i T i !
il i i H i i i
» = | i i I i
£ P j . : P i
T i
i - i - i E i x 1
! i [ 1 7 ] i i i i
04 I fidid | [ oo * !
2 i il i i ! %
i (I O | i y i ! i i
S i [ T | i i i %1 P i - R i
! ! O i i % i i
1571 por b il i il g i
[ ! [ T I A | [ * Lo * |
[ ! Lilad - Pl i . w Li 1
P i [ i i i
I N R BERERE | * P i
i B i & Pl 1 I 4
L R i [ Pl DAfN Ld L
it B R | i | i ! |
1 1 i i i i i
* i ! i i i i
i i
* o 13 1 i i
il i
L i T
i
0.0 * =
LFsPCMBARD LFSPCMBARD LFSPCMBARD LFSPCMBARD LFSPCMEBARD
MAP MRR Top 1 Top 5 Top 10

Fig. 9 Performance of Different Aggregation Methods on Extended Python Dataset.

fa

-4 09NV

NYVIT-LIDS

AXO¥dWLIW
¥3d3IPI00Z
= QYVAHOLIMS
‘W-1-ssosl

- S$153N03Y

- 3S0dW0D
ASV3LS3IY
N3AVIA

INH
ILYNYIGH
;- VHANVSSYD

mMaP 8 6 112 112

z
IS

112 112 112 [fe8

B8 - B8

L-16 L-16 L-16 [fa8

RIS 17 RN 17 (17 EOW 17 117 117 117 [SSlls-11 ERWEEREEY 17 EEWS 11 S11 117 117 S11 511 S 117 11 117 511 S11 511 117 08

L:Logistic Regression-68 S: CombSUM-64 M:CombMNZ-21 P:MLP-12 F:Fixed Weight-11 B:Borda Count-6 A:CombANZ-6 C:CorrB-6 R:Random Forest-2

o
Ed
IS
@

MRR 3514113

=
@«
)
>
0
®

Top_1 {RUNEUERTEEN

=
5
o
z
®

¥
@

Fig. 10 Heatmap of best composer on each project. Each row in the heatmap corresponds to a
specific evaluation metric, while each column represents an individual project. For instance, in the
first row and first column, “S-16" signifies that the “CombSUM” composer achieved the best result
in the MAP metric for the “TORNADO” project. “16” means that, across all 39 projects, CombSUM
yielded the optimal results in MAP 16 times.

configuration. When we utilized this fixed weight composer proposed by Amal.gam
we observed its performance to hold also for the extended dataset.

Both TraceScore and the fixed weight-based ABLoTS demonstrate superior results
on the extended Python dataset compared to the other two Java datasets. What is
particularly noteworthy is that, despite the absence of feature requests and traceabil-
ity information in the Python dataset, TraceScore still achieves better localization
results than on the other two Java datasets. A test examining the correlation between
project size and bug localization performance indicated that such a correlation does
not exist (refer to Table. 12 for the Pearson correlation coefficient of project size and
bug localization performance). Hence we believe that further investigation into bug
reports and bug locations is required to understand which factors, such as textual

27



Table 12 Pearson Correlation Coefficient of Project Size and Localization Accuracy.

Pearson Fixed weight LR CombSUM
Correlation Correlation p-value | Correlation p-value | Correlation p-value
MAP -0.306 0.058 -0.364 0.023 -0.274 0.091
MRR -0.182 0.268 -0.290 0.074 -0.100 0.546
Top 1 -0.190 0.246 -0.309 0.056 -0.104 0.530
Top 5 -0.158 0.337 -0.240 0.141 -0.049 0.767
Top 10 -0.174 0.289 -0.248 0.128 -0.093 0.572

alignment of terms used in issues and source code, or cohesion of terms, or diversity
of terms help to explain bug localization performance.

We observed that combining all three scores can improve the TraceScore result
by 50% ~ 105% on both datasets, which suggests that a combination of different
components is likely to outperform any single mechanism. To this end, the choice of
composer is a crucial aspect. Our empirical evaluation of the performance of various
composers unveiled that LR, CombSUM, and fixed weight consistently outperformed,
while DT and RF exhibited subpar performance.

One additional take-away of our replication study is to pay attention to the chal-
lenge of properly evaluating a technique in the presence of temporal aspects, especially
when third-party research outcomes (i.e., BugCache) behave differently than expected.
The case of the 15-day interval of BugCache is especially tricky, as for other datasets
where commits of a bug predominately happen more than 15 days before the bug’s
closing date, no such negative side effect would have been noticeable. In the case
of ABLoTS sanity checks on the DT’s feature importance values would have identi-
fied unexpected results (i.e., with BugCache rather than TraceScore dominating the
classification result), subsequently triggering confirmation or revision of the composer
mechanism.

Overall, the results of this replication study suggest that the state of the art in bug
localization is not as useful as prior results have suggested and that further research
is still needed to obtain results that are good enough to be useful in practice.

Table 13 Summary of Results.

Replicable | Generalizable
TraceScore Relhaxed cut-off date Yes Yes
Strict cut-off date No -
ABLo0TS No -
Fixed Weight Composer - Yes

4.5 Implications to Future Replication

In this section, we summarize lessons learned through our replication specific to
bug localization. The goal is to support researchers in more efficiently and rapidly
replicating the approach for a comparative study or as a baseline for novel approaches.

28



® Data Collection: During the data collection, Rath et al. collected both bug reports
and non-bug reports, traceability information between reports, commit logs, commit
code change, and constructed links from issues to code change. For the ground
truth construction, Rath et al. utilized the modified files and newly added files as
the ground truth. However, in our opinion, which files are newly added cannot be
predicted by definition. In contrast, removed files are predictable, and should be
included in the ground truth. This slight difference in the construction of the ground
truth would not change the approach, but could potentially affect the evaluation
results.

¢ Trace Graph Construction: The construction of the trace graph requires previ-
ously fixed issues. When replicating, researchers need to keep in mind that bug fixing
(or development efforts in the scope of an issue in general) are not atomic events but
potentially long-lasting activities with days, sometimes even months, between issue
creation date, commit dates, and issue closing dates. Hence, they need to be careful
about the date for artifacts selection. When predicting, only information available
at that time should be used.

¢ BugCache Calculation: For selecting the historical bug-fixing commits, apart
from keywords-based selection, also a bug ID can identify bug-fixing commits. More
important, as with the trace graph construction, any commit information taken
for file candidate scoring must have been already available by the fictive recom-
mendation time (e.g., bug creation date) or at the latest the bug’s first partial fix
implementation. As we have seen in the replication study, using the bugs’ fixed date
may lead to data leakage.

¢ Choice of Composer: Given a limited set of features (i.e., the three suspiciousness
scores), a DT may not be the most suitable option. Researchers could initiate the
exploration with LR, CombSUM, and the fixed weight composer. However, it is
crucial to experiment with various methods to select a composer tailored to specific
situations.

5 Threats to Validity

In this section, we discuss the main threats to the validity of our results, and how we
mitigate them. We use the taxonomy of Wohlin et al. [60].

Construct Validity. One possible threat to construct validity is that there is no
available open source implementation of ABLoTS approach, which means we had to re-
implement it by ourselves. To alleviate this, we carefully read the original study, trying
to reproduce it as close as possible. For the BLUIR component, we reused existing
open source code from a published paper to reduce possible errors. As for BugCache
component, we translate the original implementation from Java into Python with great
care. We carefully examined the code and the output to avoid errors. Furthermore,
we reached out to the authors of both ABLoTS and Amalgam approaches to clarify
experiment details, such as the selection of the cut-off date, aiming to ensure precise
replication. Another potential construct validity concern arises from the dataset. The
Python projects are sourced from the BuGL [33] dataset, a large-scale cross-language

29



dataset for bug localization. The Python dataset lacks feature requests and traceability
information, potentially introducing bias to the performance evaluation of TraceScore.

Internal Validity. From a perspective of internal validity, potential errors can
happen in the reproduction (e.g., settings and library usage), which is a common threat
to replication studies. We tried out possible settings and compared the results with
the original study. Another potential threat is that the open source projects in our
dataset might have been changed by the day we collected from GitHub. To address this
threat, we filter out projects that do not have complete commit information anymore.

External Validity. Regarding external validity, we experimented only on open
source Java projects and Python projects. We encourage future studies to replicate
this study with commercial projects to be able to obtain insights into ABLoTS’
generalizability in industrial settings.

Conclusion Validity. Conclusion Validity could come from the interpretation
of the results, which includes the evaluation metrics for evaluation and K-S test for
comparison. To mitigate the threat, we adopted the same evaluation metrics adopted
in the original paper. Then the two sample K-S test was utilized to compare the
difference of experiment results, as it is sensitive to differences in both location and
shape of the empirical cumulative distribution functions of the two samples.

6 Related Work

Several IRBF approaches have been proposed in the last years, which leverage informa-
tion retrieval techniques to find buggy-prone snippets from all source code candidates.
We describe below the approaches related to our work.

BugLocator calculates similarity between bug reports to recommend similar files to
similar bug reports [16]. Sisman and Kak propose a source code version history-based
fault localization approach, which utilizes the frequency of a file being buggy and its
modifications to prioritize candidate source code files [61]. Wang et al. combine similar
bug reports, code version history, and code structure to find the buggy files [14, 17].
Lucia et al. investigate five data fusion methods to improve spectrum-based fault
localization techniques [58].

Niu et al. propose a refactoring-aware traceability model for constructing more
accurate code history, which can boost the results of similar bug reports and code
version history component [62]. Wen et al. use change logs and change hunks from
commit message as alternative of segments of source code files to enable more accurate
bug localization [63].

Recently, with the emergency of deep learning (DL), many IRBL approaches
utilizing DL techniques have been proposed [64-66]. They compute the semantic
similarity between source code and bug reports by converting them into deep repre-
sentations. They achieve better results than methods relying solely on code structure.
However, similar reports component and version history component continue to play
indispensable roles. Many approaches still combine results from the similar reports
component [67-74] and version history component [67-79] with DL-based semantic
similarity to achieve improved bug localization effectiveness. For example, the MD-
CNN approach [76] combines similar bug history and bug-fixing history with other

30



code structure similarities, employing convolutional neural networks to extract features
for IRBL.

For comparison of state-of-the-art approaches, Garnier and Garcia evaluate the
effectiveness of BLUIR [19], BLUiR+ [19], and AmaLgam [14] on 20 C# projects [80].
Lee et al. conducted a generalized and large-scale investigation into six IRBL tech-
niques [24]. Akbar et al. divided IRBL tools into three generations and presented a
comprehensive large-scale evaluation of all three generations of bug-localization tools
with code libraries in multiple languages (including Java, C, C++ and Python) [18].
Li et al. re-implement six state-of-the-art bug localization approaches and report their
effectiveness on 10 Huawei projects [25]. Lee et al. [24] and Li et al. [25] analyzed the
same five state-of-the-art approaches and found lower average results than the original
ABLOTS results (e.g., MAP less than 0.4, and MRR less than 0.53).

Despite these several empirical studies described above, none of them included
ABLOTS, which strengthens the usefulness of our study. Moreover, to the best of our
knowledge, there is no study that investigate the performance of different composers on
combining the suspiciousness scores of the three components. Thus, our work address
both limitation of related work, by replicating ABLoTS and exploring the use of
different composers.

7 Conclusion

In this paper, we conduct a replication study of the ABLoTS approach for bug local-
ization. We recreated the original approach, both on the original dataset and two
extended datasets (one Java dataset and one Python dataset). Furthermore, we also
conduct empirical analysis on the performance of various composers. We found that
the core component of ABLoTS, i.e., TraceScore, is replicable and generalizable under
a relazed cut-off constraint, but irreplicable under a strict cut-off constraint. ABLoTS
is neither replicable nor generalizable because of the adoption of an incorrect cut-
off date in the BugCache subcomponent, leading to test data leaking into training
data. Also, the chosen technique to combine multiple scores yielded poor results when
applied to the correctly derived scores. Our study emphasizes the importance of choos-
ing the proper cut-off dates in evaluating bug localization techniques. The comparison
between different programming languages suggests that bug localization on Python
projects might be more straightforward than on Java projects. Our empirical analysis
reveals that LR, fixed weight, and CombSUM demonstrate superior performance in
combining different components, while DT and RF exhibit poor performance.

As part of future work, we will start investigating alternative information sources
and techniques to improve bug localization performance. We will also explore the
effectiveness of large language models in bug localization, aiming to achieve higher
accuracy in bug localization.

Data Availability. Artifacts of the experiment are available in an online replication
package: https://github.com/feifeiniu-se/Replication2

Acknowledgments. This work is supported by Natural Science Foundation of
Jiangsu Province, China (BK20201250), Cooperation Fund of Huawei-NJU Creative
Laboratory for the Next Programming, and also supported in part by NSF Grant

31



2034508 (USA), by a Sam Taylor Fellowship Award, the Austrian Science Fund (FWF)
grant P31989-N31 and P34805-N as well as the LIT Secure and Correct System Lab
sponsored by the province of Upper Austria.

Compliance with Ethical Standards

Conflict of Interest The authors declared that they have no conflict of interest.

References

[1] Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open
source software. Empirical software engineering 19(6), 1665-1705 (2014)

[2] Aslan, O., Samet, R.: Mitigating cyber security attacks by being aware of vulner-
abilities and bugs. In: 2017 International Conference on Cyberworlds (cw), pp.
222-225 (2017). IEEE

[3] Piessens, F.: A taxonomy of causes of software vulnerabilities in internet soft-
ware. In: Supplementary 13th International Symposium on Software Reliability
Engineering, pp. 47-52 (2002). Citeseer

[4] Anvik, J., Hiew, L., Murphy, G.C.: Coping with an open bug repository. In: 2005
OOPSLA Workshop on Eclipse Technology eXchange, pp. 35-39 (2005)

[5] Kim, S., Zimmermann, T., Whitehead Jr, E.J., Zeller, A.: Predicting faults
from cached history. In: 29th International Conference on Software Engineering
(ICSE’07), pp. 489498 (2007). IEEE

[6] Zhang, H.: An investigation of the relationships between lines of code and defects.
In: 2009 IEEE International Conference on Software Maintenance, pp. 274283
(2009). IEEE

[7] Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: 28th International
Conference on Software Engineering, pp. 361-370 (2006)

[8] Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Duplicate bug reports
considered harmful. .. really? In: 2008 IEEE International Conference on Software
Maintenance, pp. 337-345 (2008). IEEE

[9] Ciborowska, A., Damevski, K.: Fast changeset-based bug localization with bert.
In: 44th International Conference on Software Engineering, pp. 946-957 (2022)

[10] Huo, X., Thung, F., Li, M., Lo, D., Shi, S.-T.: Deep transfer bug localization.
IEEE Transactions on software engineering 47(7), 13681380 (2019)

[11] Li, G., Liu, H., Chen, X., Gunawi, H.S., Lu, S.: Dfix: automatically fixing
timing bugs in distributed systems. In: 40th ACM SIGPLAN Conference on

32



[14]

[15]

[16]

[17]

[18]

[21]

[22]

Programming Language Design and Implementation, pp. 994-1009 (2019)

Jeffrey, D., Feng, M., Gupta, N., Gupta, R.: Bugfix: A learning-based tool to
assist developers in fixing bugs. In: 2009 IEEE 17th International Conference on
Program Comprehension, pp. 70-79 (2009). IEEE

Loyola, P., Gajananan, K., Satoh, F.: Bug localization by learning to rank
and represent bug inducing changes. In: 27th ACM International Conference on
Information and Knowledge Management, pp. 657-665 (2018)

Wang, S., Lo, D.: Version history, similar report, and structure: Putting them
together for improved bug localization. In: 22nd International Conference on
Program Comprehension, pp. 53-63 (2014)

Lukins, S.K., Kraft, N.A., Etzkorn, L.H.: Bug localization using latent dirichlet
allocation. Information and Software Technology 52(9), 972-990 (2010)

Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In: 2012 34th

International Conference on Software Engineering (ICSE), pp. 14-24 (2012).
IEEE

Wang, S., Lo, D.: Amalgam+: Composing rich information sources for accurate
bug localization. Journal of Software: Evolution and Process 28(10), 921-942
(2016)

Akbar, S.A., Kak, A.C.: A large-scale comparative evaluation of ir-based tools
for bug localization. In: 17th International Conference on Mining Software
Repositories, pp. 21-31 (2020)

Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. In: 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 345-355 (2013). IEEE

McMillan, C., Grechanik, M., Poshyvanyk, D., Fu, C., Xie, Q.: Exemplar: A source
code search engine for finding highly relevant applications. IEEE Transactions on
Software Engineering 38(5), 1069-1087 (2011)

Wong, C.-P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H.: Boosting bug-
report-oriented fault localization with segmentation and stack-trace analysis. In:
2014 IEEE International Conference on Software Maintenance and Evolution, pp.
181-190 (2014). IEEE

Youm, K.C.; Ahn, J., Kim, J., Lee, E.: Bug localization based on code change
histories and bug reports. In: 2015 Asia-Pacific Software Engineering Conference
(APSEC), pp. 190-197 (2015). IEEE

33



23]

[24]

[30]

[31]

32]

[33]

Rath, M., Lo, D., Méader, P.: Analyzing requirements and traceability information
to improve bug localization. In: 15th International Conference on Mining Software
Repositories, pp. 442-453 (2018)

Lee, J., Kim, D., Bissyandé, T.F., Jung, W., Traon, Y.L.: Bench4bl: Reproducibil-
ity study of the performance of ir-based bug localization. In: 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2018, pp.
1-12 (2018). https://doi.org/10.1145/3213846.3213856

Li, W., Li, Q., Ming, Y., Dai, W., Ying, S., Yuan, M.: An empirical study of
the effectiveness of ir-based bug localization for large-scale industrial projects.
Empirical Software Engineering 27(2), 1-31 (2022)

Shepperd, M., Ajienka, N., Counsell, S.: The role and value of replication in
empirical software engineering results. Information and Software Technology 99,
120-132 (2018)

Carver, J.C.: Towards reporting guidelines for experimental replications: A pro-
posal. In: 1st International Workshop on Replication in Empirical Software
Engineering, vol. 1, pp. 1-4 (2010)

Haben, G., Habchi, S., Papadakis, M., Cordy, M., Le Traon, Y.: A replica-
tion study on the usability of code vocabulary in predicting flaky tests. In:
2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), pp. 219-229 (2021). IEEE

Da Silva, F.Q., Suassuna, M., Franca, A.C.C., Grubb, A.M., Gouveia, T.B., Mon-
teiro, C.V., Santos, I.LE.: Replication of empirical studies in software engineering
research: a systematic mapping study. Empirical Software Engineering 19(3),
501-557 (2014)

Niu, F., Mayr-Dorn, C., Assuncdo, W.K., Huang, L., Ge, J., Luo, B., Egyed, A.:
The ablots approach for bug localization: is it replicable and generalizable? In:
2023 IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), pp. 576-587 (2023). IEEE

Gomez, O.S., Juristo, N., Vegas, S.: Understanding replication of experiments
in software engineering: A classification. Information and Software Technology
56(8), 1033-1048 (2014)

Rath, M., Méader, P.: The seoss 33 dataset—requirements, bug reports, code
history, and trace links for entire projects. Data in brief 25, 104005 (2019)

Muvva, S., Rao, A.E., Chimalakonda, S.: Bugl-a cross-language dataset for bug
localization. arXiv preprint arXiv:2004.08846 (2020)

34



[34]

[35]

[46]

[47]

(48]

Rahman, F., Posnett, D., Hindle, A., Barr, E., Devanbu, P.: Bugcache for inspec-
tions: hit or miss? In: 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, pp. 322-331 (2011)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10-18 (2009)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval.
Cambridge university press, 77?7 (2008)

Schiitze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval
vol. 39. Cambridge University Press Cambridge, 777 (2008)

Voorhees, E.M., et al.: The trec-8 question answering track report. In: Trec, vol.
99, pp. 77-82 (1999)

Rath, M., Lo, D., Méder, P.: Replication Data for: Analyzing Requirements and
Traceability Information to Improve Bug Localization (2018)

JIRA: Jira Issue Tracking Software. https://www.jira.com (2018)
SCM, G.: Git SCM. https://www.git-scm.com (2018)

Bachmann, A., Bernstein, A.: Software process data quality and characteristics:
a historical view on open and closed source projects. In: Joint International and
Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, pp. 119-128 (2009)

Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports
using domain knowledge. In: 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 689-699 (2014)

B. Le, T.-D., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault
localization approach using likely invariants. In: 25th International Symposium
on Software Testing and Analysis, pp. 177-188 (2016)

Benton, S., Ghanbari, A., Zhang, L.: Defexts: A curated dataset of repro-
ducible real-world bugs for modern jvm languages. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pp. 47-50 (2019). IEEE

Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval vol. 463.
ACM press New York, 77?7 (1999)

NLTK: NLTK library. http://www.nltk.org (2022)

Jones, K.S.: A statistical interpretation of term specificity and its application in

35



retrieval. Journal of documentation (1972)
[49] scikit-learn: scikit-learn. https://scikit-learn.org/stable/ (2022)

[50] Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., Whitehead, E.J.: Does bug
prediction support human developers? findings [rom a google case study. In:
2013 35th International Conference on Software Engineering (ICSE), pp. 372-381
(2013). IEEE

[61] Chris Lewis, R.O.: Bug Prediction at Google. [EB/OL]. http://google-engtools.
blogspot.com/2011/12/bug-prediction-at-google.html Accessed 12, 2011

[52] Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: A language model-based
search engine for complex queries. In: International Conference on Intelligent
Analysis, vol. 2, pp. 2-6 (2005). Citeseer

[53] Imblearn: Imblearn. https://imbalanced-learn.org/stable/ (2022)

[54] Fox, E.A., Koushik, M.P., Shaw, J., Modlin, R., Rao, D., et al.: Combining evi-
dence from multiple searches. In: The First Text Retrieval Conference (TREC-1),
pp- 319-328 (1993)

[55] Fox, E., Shaw, J.: Combination of multiple searches. NIST special publication SP,
243-243 (1994)

[56] Wu, S.: Data Fusion in Information Retrieval. Adaptation, Learning,
and Optimization, vol. 13. Springer, 77? (2012). https://doi.org/10.1007/
978-3-642-28866-1 . https://doi.org/10.1007/978-3-642-28866- 1

[57] Aslam, J.A., Montague, M.H.: Models for metasearch. In: Croft, W.B., Harper,
D.J., Kraft, D.H., Zobel, J. (eds.) SIGIR 2001: 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
September 9-13, 2001, New Orleans, Louisiana, USA, pp. 275-284. ACM,
7?77 (2001). https://doi.org/10.1145/383952.384007 . https://doi.org/10.1145/
383952.384007

[58] Lucia, Lo, D., Xia, X.: Fusion fault localizers. In: 29th ACM/IEEE International
Conference on Automated Software Engineering, pp. 127-138 (2014)

[59] Massey Jr, F.J.: The kolmogorov-smirnov test for goodness of fit. Journal of the
American statistical Association 46(253), 68-78 (1951)

[60] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, USA (2000). https://doi.org/10.1007/978-1-4615-4625-2

[61] Sisman, B., Kak, A.C.: Incorporating version histories in information retrieval
based bug localization. In: 2012 9th IEEE Working Conference on Mining

36



[66]

[71]

[72]

Software Repositories (MSR), pp. 50-59 (2012). IEEE

Niu, F., Assungao, W.K.G., Huang, L., Mayr-Dorn, C., Ge, J., Luo, B., Egyed,
A.: Rat: A refactoring-aware traceability model for bug localization. In: 2023 45th
International Conference on Software Engineering (ICSE) (2023). IEEE. accepted

Wen, M., Wu, R., Cheung, S.-C.: Locus: Locating bugs from software changes.
In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 262-273 (2016). IEEE

Ciborowska, A., Damevski, K.: Fast changeset-based bug localization with bert.
In: Proceedings of the 44th International Conference on Software Engineering,
pp- 946-957 (2022)

Han, J., Huang, C., Sun, S., Liu, Z., Liu, J.: bjxnet: an improved bug localiza-
tion model based on code property graph and attention mechanism. Automated
Software Engineering 30(1), 12 (2023)

Yong, J., Zhu, Z., Li, Y.: Decomposing source codes by program slicing for
bug localization. In: 2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1-8 (2023). IEEE

Lam, A.N., Nguyen, A.T., Nguyen, H.A., Nguyen, T.N.: Bug localization with
combination of deep learning and information retrieval. In: 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC), pp. 218-229
(2017). IEEE

Xiao, Y., Keung, J., Bennin, K.E., Mi, Q.: Improving bug localization with
word embedding and enhanced convolutional neural networks. Information and
Software Technology 105, 17-29 (2019)

Sangle, S., Muvva, S., Chimalakonda, S., Ponnalagu, K., Venkoparao, V.G.:
Drast—a deep learning and ast based approach for bug localization. arXiv preprint
arXiv:2011.03449 (2020)

Cao, J., Yang, S., Jiang, W., Zeng, H., Shen, B., Zhong, H.: Bugpecker: Locating
faulty methods with deep learning on revision graphs. In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, pp.
1214-1218 (2020)

Yang, S., Cao, J., Zeng, H., Shen, B., Zhong, H.: Locating faulty methods
with a mixed rnn and attention model. In: 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC), pp. 207-218 (2021). IEEE

Qi, B., Sun, H., Yuan, W., Zhang, H., Meng, X.: Dreamloc: A deep relevance
matching-based framework for bug localization. IEEE Transactions on Reliability
71(1), 235-249 (2021)

37



73]

[76]

[77]

(78]

[79]

[80]

Shi, X., Ju, X., Chen, X., Lu, G., Xu, M.: Semirfl: Boosting fault localization
via combining semantic information and information retrieval. In: 2022 IEEE
22nd International Conference on Software Quality, Reliability, and Security
Companion (QRS-C), pp. 324-332 (2022). IEEE

Xu, G., Wang, X., Wei, D., Shao, Y., Chen, B.: Bug localization with features
crossing and structured semantic information matching. International Journal of
Software Engineering and Knowledge Engineering (2023)

Lam, A.N., Nguyen, A.T., Nguyen, H.A., Nguyen, T.N.: Combining deep learning
with information retrieval to localize buggy files for bug reports (n). In: 2015
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 476-481 (2015). IEEE

Wang, B., Xu, L., Yan, M., Liu, C., Liu, L.: Multi-dimension convolutional neural
network for bug localization. IEEE Transactions on Services Computing 15(3),
1649-1663 (2020)

Anh, B.T.M., Luyen, N.V.: An imbalanced deep learning model for bug local-
ization. In: 2021 28th Asia-Pacific Software Engineering Conference Workshops
(APSEC Workshops), pp. 32-40 (2021). IEEE

Xiao, X., Xiao, R., Li, Q., Lv, J., Cui, S., Liu, Q.: Bugradar: Bug localization by
knowledge graph link prediction. Information and Software Technology, 107274
(2023)

Al-Aidaroos, A.S., Bamzahem, S.M.: The impact of glove and word2vec word-
embedding technologies on bug localization with convolutional neural network.
International Journal of Science and Engineering Applications, 108-111 (2023)

Garnier, M., Garcia, A.: On the evaluation of structured information retrieval-
based bug localization on 20 c# projects. In: XXX Brazilian Symposium on
Software Engineering, pp. 123-132 (2016)

38



Author Biography

Feifei Niu is a Research Fellow at the University of Ottawa. She received her
Doctorate from Nanjing University. Her research interests include software quality
1 assurance, software testing, requirements engineering.

Enshuo Zhang is a master student at Nanjing University. His research interests
include software engineering, natural language processing. He can be contacted at
2575357413Qqq.

Christoph Mayr-Dorn is a senior researcher at the Institute for Software Systems
Engineering at the Johannes Kepler University Linz, Austria. He holds a Ph.D.
in Computer Science from the Technical University Vienna. His current research
interests include software process monitoring and mining, change impact assessment,
and software engineering of cyber—physical production systems.

Wesley Klewerton Guez Assuncgao is an Associate Professor with the Depart-
ment of Computer Science at North Carolina State University. Wesley was a
University Assistant in the Institute of Software Systems Engineering (ISSE)
at Johannes Kepler University Linz (JKU), Austria (2021-2023); a Postdoctoral
Researcher at Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil
(2019-2023); and an Associate Professor at Federal University of Technology -
Parand, Brazil (2013 to 2020). He obtained his M.Sc. and Ph.D. in Computer Sci-
ence from Federal University of Parand (UFPR) also in Brazil. Further information:
https://wesleyklewerton.github.io/.

Jidong Ge is an Associate Professor at Software Institute, Nanjing University. He
received his PhD degree in Computer Science from Nanjing University in 2007. His
current research interests include workflow modeling, process mining, cloud com-
puting, workflow scheduling, software engineering. His research results have been
published in more than 90papers in international journals and conference proceed-
ings including IEEE TPDS, IEEE TSC, JASE, COMNET, JPDC, FGCS, JSS, Inf.
Sci., JINCA, JSEP, ESA, ICSE, IWQoS etc

Bin Luo is a full Professor at the Software Institute, Nanjing University. His main
research interests include cloud computing, computer network, workflow scheduling,
and software engineering. His research results have been published in more than 50
papers in international journals and conference proceedings including IEEE TSC,
ACM TIST, JSS, FGCS, Inf Sci, ESA, ICTAI, etc. He is leading the institute of
applied software engineering at Nanjing University.

Alexander Egyed is a Full Professor and Chair for Software-Intensive Systems at
the Johannes Kepler University, Austria (JKU). He received a Doctorate degree from
the University of Southern California, USA in 2000 and then worked for industry
for many years before joining the University College London, UK in 2007 and JKU
in 2008. He is most recognized for his work on software and systems design —
particularly on variability, consistency, and traceability.

39



